Hierarchical competitions subserving multi-attribute choice

Contributed by laurencehunt

Laurence T Hunt, Raymond J Dolan and Timothy E J Behrens
View ID Name Type
Field Value
AuthorsLaurence T Hunt, Raymond J Dolan and Timothy E J Behrens
DescriptionContrast maps for the paper 'Hierarchical competitions subserving multi-attribute choice', Hunt LT et al., Nature Neuroscience 2014. Paper abstract: Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest that competitive inhibition may occur in early valuation stages, before option selection. We found that behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents within-attribute competition, competition between attributes and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead, our results suggest a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage.
JournalNature Neuroscience
Field Strength3.0
Add DateSept. 12, 2014, 12:39 a.m.