Anatomical Tracings of Lesions After Stroke (ATLAS) Dataset v2.0

Description: Accurate lesion segmentation is critical in stroke rehabilitation research for both quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in rehabilitation research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires significant neuroanatomical expertise. We previously released a large, open-source dataset of stroke T1w MRIs and manually segmented lesion masks (ATLAS v1.2, N=304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N=955), a larger dataset of T1w stroke MRIs and manually segmented lesion masks that includes both training (public) and test (hidden) data. Algorithm development using this larger sample should lead to more robust solutions, and the hidden test data allows for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke rehabilitation research.

View ID Name Type
Field Value
Compact Identifierhttps://identifiers.org/neurovault.collection:11940
Add DateDec. 2, 2021, 12:36 a.m.
Uploaded bysliew2
Contributors
Related article DOINone
Related article authors
Citation guidelines

If you use the data from this collection please include the following persistent identifier in the text of your manuscript:

https://identifiers.org/neurovault.collection:11940

This will help to track the use of this data in the literature.