Description: Obesity imposes serious health risks and involves alterations in resting-state functional connectivity of brain networks involved in eating behavior. Bariatric surgery is an effective treatment, but its effects on functional connectivity are still under debate. In this pre-registered study, we investigated the effects of bariatric surgery on major resting-state brain networks (reward and default mode network) in a longitudinal controlled design. 33 bariatric surgery patients and 15 obese waiting-list control patients (37 females; aged 44.15 ± 11.86 SD years (range 21-68)) underwent magnetic resonance imaging at baseline, after 6 and 12 months. We conducted a pre-registered whole-brain time-by-group interaction analysis, and a time-by-group interaction analysis on within-network connectivity (https://osf.io/f8tpn/, https://osf.io/59bh7/). In exploratory analyses, we investigated the effects of weight loss and head motion. Bariatric surgery compared to waiting did not significantly affect functional connectivity (FWE-corrected p > .05), neither whole-brain nor within-network. In exploratory analyses, surgery-related BMI decrease (FWE-corrected p = .041) and higher average head motion (FWE-corrected p = .021) resulted in significantly stronger connectivity of the reward network with medial posterior frontal regions. This pre-registered well-controlled study did not support a strong effect of bariatric surgery, compared to waiting, on major resting-state brain networks after 6 months. Exploratory analyses indicated that head motion might have confounded the effects. Data pooling and more rigorous control of within-scanner head motion during data acquisition are needed to substantiate effects of bariatric surgery on brain organization.
Communities: nutritionalIf you use the data from this collection please include the following persistent identifier in the text of your manuscript:
https://identifiers.org/neurovault.collection:9426
This will help to track the use of this data in the literature.