Multivariate neural signatures for health neuroscience: assessing spontaneous regulation during food choice

Description: Establishing links between neural systems and health can be challenging since there is not a one-to-one mapping between brain regions and psychological states. Building sensitive and specific predictive models of health-relevant constructs using multivariate activation patterns of brain activation is a promising new direction. We illustrate the potential of this approach by building two ‘neural signatures’ of food craving regulation (CR) using multivariate machine learning and, for comparison, a univariate contrast. We applied the signatures to two large validation samples of overweight adults who completed tasks measuring CR ability and valuation during food choice. Across these samples, the machine learning signature was more reliable. This signature decoded CR from food viewing and higher signature expression was associated with less craving. During food choice, expression of the regulation signature was stronger for unhealthy foods and inversely related to subjective value, indicating that participants engaged in CR despite never being instructed to control their cravings. Neural signatures thus have the potential to measure spontaneous engagement of mental processes in the absence of explicit instruction, affording greater ecological validity. We close by discussing the opportunities and challenges of this approach, emphasizing what machine learning tools bring to the field of health neuroscience. Code and data are available online:

Related article:

View ID Name Type
Field Value
Compact Identifier
Add DateApril 1, 2021, 6:25 p.m.
Uploaded bydani.cosme
Related article DOI10.1093/scan/nsaa002
Related article authorsDanielle Cosme, Dagmar Zeithamova, Eric Stice and Elliot T Berkman
Citation guidelines

If you use the data from this collection please include the following persistent identifier in the text of your manuscript:

This will help to track the use of this data in the literature. In addition, consider also citing the paper related to this collection.